Bilkent University
Department of Computer Engineering

Senior Design Project
T2527
CollabHub

Analysis and Requirement Report

Tuna Goksal | 22203827
Yigit Ozhan | 22201973
ibrahim Cayci | 22103515

_ Moin Khan | 22101287
Omer Edip Aras | 22203238

Supervisor : Aysegul Dindar Boral
Course Instructors : Mert Bigakgl, llker Burak Kurt

19/12/2025

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the
requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction
2 Current System
3 Proposed System
3.1 Overview
3.2 Functional Requirements
3.3 Non-functional Requirements
3.4 Pseudo Requirements
3.5 System Models
3.5.1 Scenarios
3.5.2 Use-Case Model
3.5.3 Object and Class Model
3.5.4 Dynamic Models
3.5.4.1 Activity Diagrams
3.5.4.1.1 Push Changes
3.5.4.1.2 Pull Changes
3.5.4.2 Sequence Diagrams
3.5.5 User Interface
4 Other Analysis Elements
4.1 Consideration of Various Factors in Engineering Design
4.1.1 Constraints
4.1.1.1 Implementation Constraints
4.1.1.2 Economic Constraints
4.1.1.3 Ethical Constraints
4.1.1.4 Social Constraints
4.1.2 Standards
4.2 Risks and Alternatives
4.3 Project Plan
4.4 Ensuring Proper Teamwork
4.5 Ethics and Professional Responsibilities
4.6 Planning for New Knowledge and Learning Strategies
5 Glossary
6 References

© 0O N No oA P PO

O O T O C Y G Ui Uik Ui Qi Ui U Ui Ui Ui G G QI G G §
A A WO OWODNOOO NNNOCOOODODO OO WD -~ O O o

1 Introduction

In the last two decades the architectural industry has obtained some software tools thanks to
advancement in computer technology. There are some software tools for 2D drawings and 3D
modeling. Since these files are complex and can be modified a few times, these files require
version control systems for storage and version control [1]. However, there are no sufficient 3D
version control tools because they do not provide ability to collaborate with other project
contributors. The reason for this incapability is that 3D files are large and viewing them requires
usage of proprietary tools unlike programming files. Thus, in the modern software environment
there are no sufficiently capable 3D collaboration tools like programming collaboration tools,
and this needs to be solved.

The objective of this project is to develop CollabHub, a specialized, high-performance version
control platform engineered exclusively for the architectural domain. Unlike generic version
control systems, CollabHub addresses the specific limitations imposed by large, proprietary
RWT files, aiming to increase productivity by reducing the time architects spend managing file
conflicts.

2 Current System

Architectural design collaboration is currently handled through a combination of file-based
workflows and proprietary coordination platforms. In most practice environments, architects
work on local copies of large RWT files and exchange updated versions via shared network
drives, cloud storage services, or email. Version tracking in this process is informal and
typically relies on manual file naming conventions or external documentation. As the number of
collaborators and project complexity increase, this approach often leads to overwritten
changes, loss of intermediate design states, and uncertainty about who made a particular
modification and when.

Several commercial tools attempt to improve collaboration by offering centralized, cloud-based
environments. Autodesk BIM Collaborate enables teams to publish and review models using
Autodesk’s cloud infrastructure and supports workflows such as design coordination and clash
detection [2]. While these features improve accessibility and coordination across teams, they
operate primarily at the level of complete model versions and require commercial licensing.
During informal discussions conducted with architecture students, it was noted that BIM
Collaborate is not included in standard student licensing plans, which limits its accessibility in
academic settings.

Similarly, platforms such as 3D Repo provide cloud-based model visualization, issue tracking,
and comparison between uploaded revisions[3]. These tools are effective for design review and
coordination but treat architectural models as review artifacts rather than actively versioned
design assets. They do not manage the internal structure of proprietary RWT files, nor do they
support controlled merging of concurrent changes directly within the authoring environment.
Feedback gathered from architecture students also indicated that subscription costs for tools
such as 3D Repo and similar BIM coordination platforms are considered prohibitively expensive
for regular student use.

Generic version control systems such as Git are not suitable for architectural workflows. RWT
files are large proprietary binary files, making textual differencing impractical and storage
inefficient. These systems lack awareness of architectural semantics and cannot provide visual
feedback or safe conflict resolution for geometric and parametric changes.

As a result, existing solutions focus on file sharing, cloud-based coordination, or model review,
often with significant cost barriers and without providing structured version control tailored to
architectural design files. In contrast, CollabHub is designed as a free system developed within
an academic context, prioritizing accessibility alongside technical capability. By avoiding
licensing barriers and focusing on RWT-specific version tracking, branching, and controlled
merging, CollabHub aims to make advanced collaboration mechanisms available to a broader
range of users, particularly students, small teams, and research-oriented environments.

3 Proposed System

3.1 Overview

CollabHub is designed as a specialized version control platform engineered exclusively for the
architectural domain, with strict support for the .rwt file format. The system allows multiple
architects to collaborate within a shared project space, providing features similar to GitHub or
Bitbucket but tailored for the visual nature of architectural design. The main objective is to
prevent the limitations imposed by generic frameworks by utilizing a core engine optimized to
track changes specifically within .rwt files.

The CollabHub system utilizes a client-server architecture designed so as to handle the high
bandwidth and processing requirements of large 3D architectural files.

e Client Side: The client application serves as the interface for the architect. It is built as
a Graphical User Interface (GUI) provided as a plugin to the RWT development
environment, combining development and version control environments. It includes a
Desktop GUI for history management, an RWTFileWatcher background service, and a
Local RWTViewer.

e Server Side: The backend is designed for scalability and efficiency. It includes an API
Gateway for request routing, an RWT Version Control Engine to track file lineage, and
an Object Storage layer to handle heavy RWT data efficiently.

3.2 Functional Requirements

The following requirements define the specific behaviors and functions the system must
support:

1. The system will extract all relevant architectural data from the project file and convert it
into a structured format suitable for backend processing.

2. The system will support uploading the extracted base version of the file to the backend,
establishing the initial reference state for future comparisons.

3. The client will compare the current file state with the previously stored version to
identify additions, modifications, and deletions.

10.

Only the identified differences will be transmitted to the backend instead of resending
the entire project file.

Each new version will be stored on the backend together with basic metadata such as
timestamp and user information.

The client will allow users to pull the latest available version from the backend and
apply the corresponding changes to their local file.

When a change cannot be applied (e.g., due to missing or altered referenced
components), the system will notify the user of the conflict.

Where supported, the client will utilize built-in visual comparison tools to highlight
differences between versions.

A custom visual comparison tool may be developed in later stages, but it is not a
requirement for the current phase of the project.

The client interface will provide simple controls that allow the user to push changes,
pull updates, and view available versions within the application.

3.3 Non-functional Requirements
3.3.1 Usability
1. The user interface will be integrated directly into the existing workflow to ensure that
architects can easily perform version control tasks without additional training.
2. Core actions such as pushing and pulling updates will be clearly presented and simple
to execute.
3. The system will provide clear and understandable feedback messages indicating the
success or failure of an operation.
3.3.2 Reliability
1. Aversion will only be stored if all associated data has been fully and correctly received
by the backend.
2. The system will report common errors such as invalid data or network failures to the
user.
3. Incomplete or corrupted differences will not be stored or applied.

3.3.3 Performance

1.

2.

The system will conceptually improve efficiency by transmitting only differences
between versions rather than entire files.

The client is expected to behave with responsiveness typical of modern desktop
applications, without strict numerical performance targets.

3.3.4 Supportability

1.

2.
3.

The system will maintain a modular internal structure to make future enhancements
and maintenance easier.

Basic logging of push, pull, and error events will be implemented to support debugging.
Developer documentation appropriate for a university-level project will be provided.

3.3.5 Scalability

1. The backend will be structured to logically support multiple projects, even if testing is
limited to a smaller scope.

2. The version storage structure will be designed so that it can be extended in future
phases without major redesign.

3.4 Pseudo Requirements

This section details the implementation constraints, economic and ethical limitations, and
engineering standards that mandate how the system must be constructed.

Implementation Constraints

e Proprietary RWT Format: The .rwt file format is proprietary, so parsing such files often
requires using specific provided developer toolkits and libraries.

e File Size and Bandwidth: RWT files can exceed several gigabytes. The
implementation must utilize efficient compression algorithms to ensure that syncing a
project does not consume excessive bandwidth or take an unreasonable amount of
time.

Economic Constraints

e High Storage Costs: Due to the large size of RWT files and the requirement to store
historical versions, the project will create high cloud storage costs compared to
standard text-based version control applications.

e Development Costs: Licensing the necessary SDKs or toolkits to legally parse and
display proprietary RWT files may require financial support.

Ethical and Privacy Constraints

e Intellectual Property Protection: Architects will trust our platform by uploading their
designs. Any security breach can result in the theft of their intellectual property, will
cause severe reputational damage.

e Privacy of Location Data: If the system tracks user activity or login locations for
security, this data must be handled according to strict privacy standards, ensuring it is
not used for unauthorized surveillance.

Standards The project will follow stated engineering standards to ensure reliability, security,
and maintainability.

e IEEE 830 (Software Requirements Specifications): This standard will be used to
document all functional and non-functional requirements, ensuring the scope is clearly
defined and agreed upon [3].

e UML 2.5.1 (Unified Modeling Language): All diagrams, such as Class, Sequence,
and Component diagrams, will be created using standard UML notation to ensure
clarity.

e AES-256 (Advanced Encryption Standard): All data storage will be encrypted using
AES-256 to prevent unauthorized access [2].

3.5 System Models

3.5.1 Scenarios

Scenario Name: User Sign-Up Participating Actors: Architect (Collaborator) Entry
Condition: The user has installed the plugin, opened Revit, and clicked the "Sign Up" button in
the CollabHub ribbon tab. Exit Condition: The user is successfully registered and
authenticated within the plugin. The Flow of Events:

1. The plugin opens a modal window requesting details: name, email, and password.
2. The system sends confirmation email
3. If credentials are confirmed, the system creates the user record.

Scenario Name: User Login Participating Actors: Architect (Collaborator), Project Owner
Entry Condition: The user clicks the "Login" button on the CollabHub panel.Exit Condition:
The user is authenticated, and the plugin connects to the server. The Flow of Events:

1. The user enters credentials into the plugin's login panel.
2. The system verifies credentials against the server.
3. If correct, the plugin retrieves the user’s project list.

Scenario Name: Create New Project Participating Actors: Project Owner Entry Condition:
The user has a model open in Revit that is not yet version-controlled. Exit Condition: The
currently open model is initialized as a CollabHub repository. The Flow of Events:

The user navigates to the CollabHub tab and clicks "Create Project.”
The user enters a project name and description in the plugin popup.
The system links the currently open file to a new remote repository.
The plugin performs the initial extraction of the open model.

The scenario ends when the plugin indicates the project is "Tracked."

oo~

Scenario Name: Invite Team Member Participating Actors: Project Owner Entry Condition:
The user is logged into the plugin and is the owner of the active project. Exit Condition: An
invitation is sent. The Flow of Events:

The user clicks the "Settings" icon in the CollabHub panel.
The user selects the "Team" tab.

The user enters the email of the collaborator.

The system validates the email.

The system sends the invitation.

The scenario ends when the Ul shows "Invitation Pending."

I e o

Scenario Name: Push Changes to Server Participating Actors: Collaborator Entry
Condition: The user has made changes to the open Revit model and saved them locally. Exit
Condition: The changes are synced to the server. The Flow of Events:

The user clicks the "Push" button in the CollabHub panel.

The plugin locks the Ul to prevent further edits during the process.
The system extracts data directly from the active Revit API context.
The system compares this data against the last known server state.
The system transmits only the differences (diffs).

o=

6. The user receives a "Success" toast notification in the Revit window.

Scenario Name: Pull Updates from Server Participating Actors: Collaborator Entry
Condition: The plugin notification icon shows that new commits are available from the team.
Exit Condition: The open Revit model is updated with team changes. The Flow of Events:

1. The user clicks the "Pull" button in the CollabHub panel.
. The plugin downloads the differential data.
3. The plugin utilizes the Revit API to modify the current open document (e.g., moving
walls, adding families).
4. If no conflicts exist, the Revit view refreshes to show the new geometry.
5. The scenario ends when the "Up to Date" status is displayed.

Scenario Name: Visual Comparison (Diff) Participating Actors: Collaborator Entry
Condition: The user wants to compare their current open view with a past version. Exit
Condition: The Revit viewport displays a color-coded analysis. The Flow of Events:

The user opens the "History" panel in the plugin.

The user selects a previous commit and clicks "Visual Diff."

The plugin generates a temporary "Analysis View" inside Revit.

The plugin overrides graphics: Green for new elements, Red for deleted, Yellow for
moved.

5. The scenario ends when the user switches back to their standard view.

N~

3.5.2 Use-Case Model

Collab-Hub

Compare
] differences
<+
—
User Collabramy\
<<Include>> _~ ExtractRWT = | Revit
Push Changes | ~ T peta

Owner
Pull Updates
<Extend>>

3.5.3 Object and Class Model

Element
+id: str
+oategory: ST
+type: str

+parameters: Dict{str, Farameter]
+geometry: Geomatry
+location

: Lecation+ method():
Type
Change DiffResult
+chanpeType: str +baselfersion: str
+elementld: s #targetiersion: str
+changes: LisChange] Routers Storage
5 sconficts: List[Confict] S
“ +auth, projects, |.._eae n | tO%E _id)
tese> T_....) sapehots, dif, merge | %55 196t Snapsnolcomms,o) ElementSnapshot
by - czusesss’ 7 = - susrsion: str
k- - } “=storesietums o g o
DiffEngine = it 3
g . Commit ~ =estoresiretume>> +madalld: st
+compute_diff(base_slements, target_elements, q<usﬁtH'|'|'P‘}>> +commitld: str '“iI"ESIE:"_’: !:Ialgline
base_version, target_version) DiffR esult ErEtumEs=E r +pmjenlld"sw +elements: L st{Flement]
+detect_conflicts{local_changes, remate_changes) o +rrE5age" ot
List{Conflict] : T s
+apply_selective_changes(base_slements : +mesiamp: datetme =
H <<yses>=
ApiClient ElementExtractor ‘,-"’
+baselrl: string +ElementExractor{Documant) <<uses>>
+ExdractAllElements{) List< Object> et
+SetfuthToken|token) H
+LoginAsync{email, password} LoginResponse +ExraciElement(Element) JObject
b yne(projectld, Elemel .
+GetDifAsyncprojectid, base, taret) DiffResult Yrreer il
+PullChangesAsync{projectid, current, target) PulResult - L
1 PublishCommand
] AN |+Execute..) I,
A ceugesn> *,
<dusess> - -
kY Tas <<ragi o >
DiffiewCommand I(
PullCommand +Exscutel..) e "
T Executsl) o . Application
C TP +0nStartupiapplication)
<<registersioreatess> ReqisterD o
<<registers>> =<registersss
A 5
DiffMergePaneProvider - -
HistoryPaneProvider

Figure : Class & Object Diagram

3.5.4 Dynamic Models

3.541 Activity Diagrams
3.5.41.1 Push Changes

plugin user server

open Collab Hub
panel

@< A % view changes made

changes exist ?

\I/ yes
enable push button push the changes

extract diff data push changes
send data to . .
update project version —%
server

Above is the activity diagram that shows the process for pushing the changes made to the
Collab Hub.

o4

3.5.4.1.2 Pull Changes

user system

Open Collab Hub panel

Click pull updates button

Retrieve version history

fetch differences

return
differences data

yes no

\%

conflict detected ?

apply all changes to
model

Merge conflicts

VAN
7\

update model data
Gisplay success messaga

Above is the activity diagram that shows the process for pulling the changes from the Collab
Hub.

3.5.4.2 Sequence Diagrams

Publish Snapshot
i RevitApp Command Extractor ApiClient Backend Storage
User B . .
user clicks "Publish” 1 . L .
» trigger Add-in Command _ * ™
i ExtractAllElements()
Pub tAsync(projectld, E ot)
»
Post {id}/snapshots
create_commit()
store_snapshot
retums Commit object
retuns Commit Json
[Pt el
oo oooonnnn. . SOMMIL (QRSEANzE)
Success Dial
R oo ks SNINS— L

Figure : Publish Snapshot (Push) Sequence Diagram

View Diff

{ =1 [=]

Backend ‘ Storage ‘ ‘ DiffEngine

DiffviewCommand.Execute() *

user clicks "View Diff,_ .
GelDifiAsynciprojectid, base, targef)

GET Japilv iprojects/fid}/dift

get_snapshol(base)
gel_snapshotitarget)

compute_diff(base.elements, target elements)

L. retums DifResut oo +conflicts)
retums DifResult Json
5P gt A
§ DiffResult
Show DiffiergePane [PPRR L R
wiith results

Figure : View Diff Sequence Diagram

12

Pull Changes

f Revitapp Command ApiClient m Storage DifEngine

User
_* user dlicks "Pull Changes”

PullCommand Execute()

PullChangesAsynciprojectid
curreniCommit, targetCommit]

POST fapiiui fprojects/fid}pull
defermine changes

create merge conficts if any

compute_diff{base elements, target. clements)
opti

retums DifiResult + conflicts)

fetums PullResult{ (changes, conflicts, requ
-

PullResult

laltemativ
Open Merge Dialog /
[confiict] Show DiffvergePane
for manual resolution

[na confiict] . ‘Success Dialog & Apply changes

Figure : Pull Changes Sequence Diagram

3.5.5 User Interface

Ris o=
Filel] Architecture Structure Stee
Publish View Settings

P
Snapshot History Change:

Revit VC

MO0O - Cover Sheet X

B Edit Type

Mechanica

13

Project Browser - Snowdon Towers Sample HV.

Aomme Y

. Views (Discipline)
~ Coordination
~ Collaboration
+ Floor Plans
Coordination
+ 3D Views
+ Drafting Views (Detail
~ HVAC
+ Elevations (Building Elevation)

PARR R T

Mechanical
var

Dashboard panel

13

CollabHub

. RECENT COMMITS
ORAGE snowdon-hvac.rvt Review Pending

abc

Added conference room walls ACTIVE MODELS

Connector Snowdon Towers HVAC

Syne Service

?‘l W Riverside Hospital
Updated door specifications :

gy UrbanLoftinterior
Initial commit for new interior design
rban Loft |

1d0f5g

Merged 'hotfix/boiler-sizing'

Dashboard panel close-up

Project_Alpha.rvt READONLY
CHANGES
Added (v15)
Removed (v14)
Modified

Comparing v14 v

VISIBILITY FILTERS

€ All Categories

4 Structure
Walls
Columns
Floors

HVAC
Ducts

Terminals
Changes (12)

Ductwork #402

Geometry modified. V

Level3 | HVAC

Partition Wall (Int)

A CLASHDETECTED
Please verify clearance with
the new structural beam Leveld | Arch

here.

VAV Box Unit

lement ad

Return Air Grille

omm].

Advanced Filters

Diff view panel
14

Vertex Comments

f ? John Doe

Please verify clearance with the new structural
beam here. Looks like a clash.

Jane Smith
I've checked, the beam needs to be adjusted. I'l
flag it with the structural team.

John Doe
Thanks, Jane! Let me know if you need any
further info from the MEP side.

Cancel > PostComment

Vertex comments screen

15

n CollabHub @ TowerBlock Amvt wgopn = L) Export Commit 8f3eza
41

Upto date

Lineage .
g e sustainability

[@ Project Browser Map study-v2

2 Team

m Analytics

CHANGED ELEMENTS (40)

s Curtain_Wall_Panel_Type_C
" nily: i

Thermal Layers
ullion

Steel_450
3atbac Level 4, Grid B-2
Grid Alignment

Wall_Ext_Brick_Insul

Parameter: Thermal Resistance

£ Settings

¢ Compare ® Restore Point

Timeline Page

4 Other Analysis Elements
41 Consideration of Various Factors in Engineering Design
411 Constraints

41.1.1 Implementation Constraints

e CollabHub will be developed primarily as a Autodesk Revit Plugin using C# and the
NET framework to ensure integration with the Revit environment.

e The backend will be built using Python (specifically with FastAPI framework) as it is a
framework that most of the team are experienced with.

e PostgreSQL will be used as the relational database for storing metadata (commit logs,
user info, branch pointers).

e The system must comply with the Autodesk Revit API limitations; specifically, it must
handle main-thread restrictions when interacting with the active model to prevent
freezing the user interface.[4]

41.1.2 Economic Constraints

e The project must utilize open-source libraries and free-tier cloud services where
possible to fit within a project budget of zero.

e Since .rwt files are significantly larger (Gigabytes) than text files of code, Cloud storage
costs are a major constraint. The system must implement an efficient way of storing
the .rwt files in its database.

16

41.1.3

41.1.4

41.2

4.1.21

4.1.2.2

41.2.3

41.2.4

The development requires access to Autodesk Revit licenses. The team relies on
educational licenses that can be accessed through university..

Ethical Constraints
Intellectual Property (IP) Protection: Architects’ designs are their trade secrets. The
system must ensure that proprietary design files are not accessible to unauthorized
users.
Data Integrity: In the construction industry, a corrupted file can lead to structural errors
in the real world. The system is ethically bound to verify the integrity of every uploaded
and downloaded file to prevent losses and potential safety hazards.(eg. The system
must clearly inform the user if a "merge" operation resulted in any data loss or if a
conflict requires manual intervention.)
Privacy: User activity logs must be stored securely and only visible to authorized team
members, not exposed publicly.

Social Constraints
Usability for Non-Programmers: Unlike software engineers, architects may not be
familiar with usage of command line tools. The application must provide a Graphical
User Interface (GUI) that abstracts complex version control concepts into
understandable terms.
Collaboration: The system should foster a collaborative environment by allowing
multiple architects to work on different parts of a building simultaneously without
"locking" the entire project. This constraint also reflects the core functionality this
project aims to achieve.

Standards

IEEE 830 The IEEE 830 standard provides the guidelines for our Software
Requirements Specifications (SRS). By following this standard, we ensure that our
requirements for "RWT Versioning" and "Visual Diffing" are clearly defined,
unambiguous, and verifiable, serving as a solid contract between the developers and
the stakeholders.[3]

ISO 19650 (BIM Information Management) While primarily a construction standard,
ISO 19650 defines the concepts of a Common Data Environment (CDE). CollabHub
aligns with these standards by managing the "Work in Progress" and "Shared" states
of information containers (RWT files), ensuring the project adheres to
industry-standard information lifecycles.[5]

UML 2.5.1 - Unified Modeling Language We utilize UML 2.5.1 to visualize the
complex interactions of our system. Specifically, Sequence Diagrams are used to
map the synchronization process between the Client Plugin and the API Gateway,
and Class Diagrams are used to structure the internal logic of the proprietary file
parser.[6]

AES-256 (Advanced Encryption Standard): All data storage will be encrypted
using AES-256 to prevent unauthorized access [2].

17

4.2 Risks and Alternatives

Potential Risk Likelihood Alternative / Mitigation
Strategy (Plan B)

Data Persistence 4 10 Alternative: Implement a

Failure (Currently using containerized PostgreSQL

in-memory storage.py) or MongoDB instance. Use
an Object-Relational
Mapper (SQLAIchemy) to

ensure data is written to
disk immediately upon a
"Publish" command.

Revit Version 4 8 Alternative: Develop a
Incompatibility (C# API "Version Wrapper" or
changes between Revit abstraction layer in the C#
2024/2025) plugin. If the latest AP fails,

the system falls back to a
basic IFC-based (Industry
Foundation Classes)
extraction method.

High Latency/Network 5 5 Alternative: Implement
Bottleneck (Large JSON "Delta-Only" transfers.
snapshots slowing Revit) Instead of sending all

elements, the
ElementExtractor compares
hashes locally and only
sends elements that have
changed since the last
CommitlD.

18

Geometry Hashing 2 9 Alternative: Move beyond

Collisions (Different simple hashing to a
shapes producing the "Multi-Factor Verification"
same hash) where the DiffEngine

checks bounding box
dimensions, volume, and
XYZ coordinates in addition

to the hash.
Authentication/JWT 2 3 Alternative: Implement a
Expiry (Users losing "Local Cache" or "Draft
connection mid-sync) Mode" in the C# plugin. If

the FastAPI server is
unreachable, changes are
saved to a local SQLite file
and pushed automatically
once the connection is
restored.

Project Plan

Factor Effect
Level

Public Safety Ensuring the DiffEngine accurately identifies changes
in structural elements to prevent collapse risks during
BIM updates.

Public Welfare 6 Improving project delivery speed, which reduces

public infrastructure costs and delays.

19

Global Factors

Environmental

Economic

Likelihood

Compliance with international BIM standards (ISO
19650) for interoperable data exchange via JSON.

Tracking material quantity changes in the VCS helps
monitor the carbon footprint of the design.

Reducing labor costs associated with "manual” file
merging and data loss in architectural firms.

Effect B Plan Summary

Data Loss
(In-Memory)

Geometry
Hash Conflict

Revit API
Breaking

10 Replace storage.py in-memory logic
with a persistent PostgreSQL
database immediately.

10 Implement a "Strict Mode" that flags
complex geometry for manual
verification if hashes match incorrectly.

8 Use a version-agnostic wrapper in the
C# plugin to support Revit 2023, 2024,
and 2025.

20

Work Package Title Leader Members involved

WP1 Backend API & Diff Logic Tuna Goksal Omer Edip Aras,
Moin Khan

WP2 Revit Plugin & Element Extraction Moin Khan Ibrahim Cayci, Omer
Edip Aras

WP3 UI/UX & Conflict Resolution Yigit Ozhan ibrahim Cayci

WP 1: Backend API & Diff Logic

Start date: Week 1 End date: Week 4

Leader: | Tuna Goksal Members involved: | Omer Edip Aras, Moin
Khan

Objectives: Create the bridge between the Revit modeling environment and the VCS
server. This package focuses on extracting geometric and parameter data from Revit
elements and converting them to JSON.

Tasks:

Task 1.1 Server Setup : Configure main.py with FastAPI, CORS, and JWT authentication
routers.

Task 1.2 Diff Engine Development :Program diff_engine.py to calculate differences
between two ElementSnapshot objects.

Task 1.3 Storage Persistence: : Transition storage.py from temporary RAM to a structured
database.

Deliverables
D1.1: Functional REST API Documentation (Swagger).
D1.2: DiffEngine logic supporting selective change application

WP 2: Revit Plugin & Element Extraction

Start date: Week 2 End date: Week 6

Leader: | Moin Khan Members involved: | ibrahim Cayci, Omer Edip
Aras

Objectives: Build the client-side bridge between the Autodesk Revit environment and the
CollabHub backend. This involves developing the C# logic to query the Revit database,
extract element geometry and parameters, and serialize them for transmission.

Tasks:
Task 3.1 History Pane: Create the HistoryPane.xaml to display a list of previous commits
and authors.

21

Task 3.2 Visual Diff Ul: Develop the DiffMergePane to highlight changes directly in the
Revit 3D viewport using colors (Red/Green).

Task 3.3 Conflict Dialogs: Implement DiffSelectDialog.cs for manual selection when two
users change the same element.

Deliverables
D2.1: Compiled .addin file for Revit.
D2.2: JSON schema for architectural element snapshots.

WP 3: UI/UX & Conflict Resolution

Start date: Week 4 End date: Week 8

Leader: | Yigit Ozhan Members involved: | ibrahim Cayci

Objectives: Build the visual interface within Revit that allows architects to manage
versions. The focus is on making "Diffing" and "Merging" intuitive for non-technical users.

Tasks:

Task 3.1 History Pane: Create the HistoryPane.xaml to display a list of previous commits
and authors.

Task 3.2 Visual Diff Ul: Develop the DiffMergePane to highlight changes directly in the
Revit 3D viewport using colors (Red/Green).

Task 3.3 Conflict Dialogs: Implement DiffSelectDialog.cs for manual selection when two
users change the same element.

Deliverables
D3.1: WPF-based Version Control Dashboard.
D3.2: Viewport Overlay System for visual change tracking.

4.4 Ensuring Proper Teamwork

The way you plan/method to establish teamwork, can be described. You can have roles and
responsibilities matrix or some other plans to ensure teamwork.

Task / Tuna Moin Yigit ibrahim Omer
Deliverable

API Endpoint A R R
Security

22

Element C A [R R
Extraction
Logic

Conflict C A I R
Resolution Ul

Database A | | I
Migration
Project R R R R R

Documentation

Key: A=Accountable, R=Responsible, C=Consulted, I=Informed

To ensure efficient project management, we investigated various collaboration tools,
including Jira and Trello. We ultimately selected GitHub as our primary management tool
due to its seamless integration with our codebase, allowing us to link tasks directly to
pull requests. For real-time communication, the team utilizes Zoom. To ensure proper
teamwork and equal contribution, we will rely on the objective data recorded in our
project board and version control history. The commit logs and task completion status
will serve as the primary evidence of individual performance and shared leadership
throughout the development process.

4.5 Ethics and Professional Responsibilities

Developing a VCS for the built environment carries unique ethical obligations regarding safety,
transparency, and data ownership.

e Algorithmic Transparency (The Diff Engine): Our diff_engine.py is designed to be
deterministic. We have an ethical duty to ensure that "Conflicts" are never resolved
automatically by the Al/Code in a way that compromises structural integrity; human
intervention is always required for geometric clashes.

e Data Verifiability: By storing snapshots as JSON in storage.py, we create an
immutable audit trail. In the event of a structural failure or legal dispute, the system
provides an honest record of who modified a specific element and when.

e Security & Privacy: While the current build uses a demo JWT (auth.py), we
acknowledge the professional responsibility to implement TLS and salted password
hashing to protect proprietary "Trade Secret" architectural details from industrial
espionage.

23

e Accountability in Design: The system discourages "anonymous" changes. Every
Commit is tied to a user ID, fostering a culture of professional accountability.

4.6 Planning for New Knowledge and Learning Strategies

Transitioning from "File-Saving" to "Element-Committing" requires a structured change
management plan.

Strategy 1: The "Visual Diff" Discovery

Architects are visual learners. Our primary learning strategy is Visual Feedback. By using the
DiffMergePane.xaml, users can see deleted elements highlighted in red and new ones in green
directly inside the Revit Viewport. This lowers the cognitive load of learning a new technical
system.

Strategy 2: Learning Interface Driven Training

This strategy uses C# WPF Ul and ElementExtractor to provide "just-in-time" learning.

- WPF Error Guidance: The PublishDialog and ApiClient provide real-time feedback.
Instead of generic errors, the Ul explains the ElementSnapshot logic (e.g., "Geometry
hash mismatch detected"), teaching users the technical logic of the system while they
work.

- Sandbox Simulation: Using the existing storage.py (which is currently in-memory), new
users are given a "Practice Branch" to test Publish and Pull commands. This allows
them to master the tool in a safe environment where data resets on restart.

Strategy 3: Knowledge Maintenance

- Internal Wiki: Documenting common ElementExtractor errors and how to handle
"Geometry Hashing" discrepancies.

- Unit Test Education: Encouraging the team to write new test cases for diff_engine.py
when new Revit categories (like HVAC or Plumbing) are added to the scope.

5 Glossary

AES-256 (Advanced Encryption Standard): A symmetric encryption algorithm that uses a
256-bit key to secure data. In this project, it is used to encrypt RWT files stored on the server to
protect intellectual property.

BIM (Building Information Modeling): A process involving the generation and management
of digital representations of physical and functional characteristics of places. CollabHub is a
tool designed specifically to manage BIM data.

Clash Detection: An automated process in architectural software that identifies where two
building elements (e.g., a pipe and a wall) physically overlap or interfere with one another.

CORS (Cross-Origin Resource Sharing): A security feature that allows the Revit Plugin

(client) to make requests to the FastAPI backend domain.
24

Diffing (Differential): The process of comparing two versions of a file or object to identify
changes. In CollabHub, this refers specifically to identifying geometric or parameter changes in
architectural elements.

ElementSnapshot: A structured JSON object defined in this project that represents the state
of a single Revit element (geometry and parameters) at a specific point in time, used for
comparison by the Diff Engine.

Geometry Hash: A computed alphanumeric string generated from the vertex data and
dimensions of a 3D object. If the hash changes, the system knows the geometry has been
modified.

IFC (Industry Foundation Classes): A platform-neutral, open file format specification that is
not controlled by a single vendor or group of vendors. Used as a fallback method for data
extraction in this project.

RACI Matrix: A responsibility assignment chart that maps out every task, milestone, or key
decision to the roles of Responsible, Accountable, Consulted, and Informed.

Revit API: The Application Programming Interface provided by Autodesk. It allows the
CollabHub plugin to programmatically read, extract, and modify 3D elements within an active
Revit session.

Ribbon: The main toolbar interface in Autodesk Revit where the CollabHub plugin buttons
(Push, Pull, Login) will be located.

RWT (.rwt): The proprietary file extension for Autodesk Revit project files, which contain the full
architectural model and metadata.

6 References
[1] N. Leavitt, “Software Version Control Systems,” Computer, vol. 38, no. 6, 2005.

[2] National Institute of Standards and Technology, “Advanced Encryption Standard (AES),”
FIPS PUB 197, 2001.

[3] IEEE, “IEEE Std 830-1998: Recommended Practice for Software Requirements Specifica
tions,” 1998.

[4] Autodesk, "Revit API Developers Guide," Autodesk Knowledge Network, 2024. [Online].
Available: https:/help.autodesk.com/view/RVT/2024/ENU/

[5] Organization and digitization of information about buildings and civil engineering works,
including building information modelling (BIM) — Information management using building
information modelling — Part 1: Concepts and principles, ISO 19650-1:2018, Dec. 2018.

[6] Object Management Group, "Unified Modeling Language (UML) Specification Version
2.5.1," Dec. 2017. [Online]. Available: https://www.omg.org/spec/UML/2.5.1/PDF

[7] 3D Repo Ltd., “3D Repo — BIM Collaboration Platform,” 2025. [Online]. Available:
25

https://help.autodesk.com/view/RVT/2024/ENU/
https://www.google.com/search?q=https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

https://3drepo.com/
[8] Autodesk, “Autodesk BIM Collaborate,” 2025. [Online]. Available:

https://www.autodesk.com/products/bim-collaborate/overview

26

	1​Introduction
	2​Current System
	3​Proposed System
	3.1​Overview
	3.2​Functional Requirements
	3.3​Non-functional Requirements
	3.4​Pseudo Requirements
	3.5​System Models
	3.5.1​Scenarios
	3.5.2​Use-Case Model
	3.5.3​Object and Class Model
	3.5.4​Dynamic Models
	3.5.4.1​Activity Diagrams
	3.5.4.1.1​Push Changes
	3.5.4.1.2​Pull Changes

	3.5.4.2​Sequence Diagrams

	3.5.5​User Interface

	4​Other Analysis Elements
	4.1​Consideration of Various Factors in Engineering Design
	4.1.1​Constraints
	4.1.1.1​Implementation Constraints
	4.1.1.2​Economic Constraints
	4.1.1.3​Ethical Constraints
	4.1.1.4​Social Constraints

	4.1.2​Standards

	4.2​Risks and Alternatives
	4.3​Project Plan
	4.4​Ensuring Proper Teamwork
	4.5​Ethics and Professional Responsibilities
	4.6​Planning for New Knowledge and Learning Strategies

	5​Glossary
	6​References

